COVID-19 响应——我们致力于在这场大流行病期间为科学界提供支持。了解更多

高内涵共聚焦成像解决方案提供水镜配置

ImageXpress® Micro Confocal 系统是一个高内涵解决方案,可在固定细胞和活细胞的宽场和共聚焦成像之间一键切换。它可捕获完整生物体、厚组织、2D 和 3D 模型以及细胞或细胞内事件的高质量图像。转盘式共聚焦和 sCMOS 相机可对心肌细胞搏动和干细胞分化等快速和罕见事件进行成像。由于具备 MetaXpress 软件且有水镜等灵活配置可供选择,该系统可支持从 3D 实验开发到细胞筛选的多种共聚焦成像应用。

  • 获取更高质量的图像

    获取更高质量的图像

    使用我们专有的 AgileOptix™ 转盘式共聚焦技术、宽视野和高亮度光源来捕获对比度极佳的高分辨率图像。

  • 自定义图像采集和分析

    自定义图像采集和分析

    对采集和分析参数进行最终控制,从而实现从 3D 结构分析到生物体或细胞群内特定目标的靶向成像的多种应用。使用水镜、环境控制等标准配置或我们的其他高性能定制化组件来进行更多应用。

  • 在更短的时间内分析更多的数据

    在更短的时间内分析更多的数据

    MetaXpress® PowerCore™ 软件可加快高通量环境下的分析速度。该软件将图像处理任务分配至多 CPU 环境。

 ImageXpress Micro Confocal 虚拟浏览

ImageXpress Micro Confocal 虚拟浏览

特点

  • 宽动态范围

    通过动态范围 > 3log 的光强检测能力来定量单张图像中的低强度和高强度信号。

  • 专有 AgileOptix 转盘式共聚焦

    该技术可通过专门设计的光学器件、高性能固态光学引擎和 sCMOS 技术来提高灵敏度。可切换的转盘结构提供速度与分辨率之间的灵活选择。

  • 宽视野

    宽视野可实现全孔共聚焦成像并避免目标遗漏。

  • 可选机载自动液流系统

    可选机载自动液流系统适用于涉及化合物添加、孔清洗和培养基交换的检测。

  • 3D 精准测定

    MetaXpress 3D 分析模块针对共聚焦成像进行了优化,可实现体积和距离的 3D 测量。

  • 多种成像模式

    该系统可提供相差和明场非标记成像、荧光、宽场、比色和共聚焦成像,以及水镜成像(作为标准配置)。

AgileOptix™ 技术

我们专有的 AgileOptix 技术让 ImageXpress Micro 共聚焦系统能够提供高要求应用所需的灵敏度和通量。AgileOptix 是强大的固态光引擎、特别设计的光学器件、科研级 CMOS 传感器与可变结构式转盘的组合。

AgileOptix 技术适用于 ImageXpress Micro 共聚焦系统

 

 

 

 

MetaXpress 3D 分析工具套件简介

MetaXpress 高内涵图像采集和分析软件

 

  • 使用可扩展的流线型工作流程,符合高通量要求
  • 调试您的分析工具以处理 3D 分析等有挑战的情况
  • 进行第三方硬件和安全数据库之间的自动数据传输
  • 使用 MetaXpress 软件模块设置数百种常规使用的高内涵筛选 (HCS) 检测方案

 

 

 

 

细胞图像库

Micro 共聚焦高内涵成像系统
ImageXpress 高内涵成像解决方案
ImageXpress Micro 共聚焦成像系统
ImageXpress Micro 成像系统
Micro 共聚焦成像系统
 
在开发期间使用客户样品获得的数据和图像。结果可能会有所不同。*突出功能的价格、交付时间和规格将根据互相协定的技术要求而变化。可能会根据解决方案要求调整标准性能。

 

 

ImageXpress Micro Confocal 共聚焦高内涵成像分析系统的应用

ImageXpress Micro Confocal 转盘共聚焦高内涵成像分析系统的技术参数和可选配置

ImageXpress Micro Confocal 转盘共聚焦高内涵成像分析系统的资源

报告内容
视频和网络研讨会
抗原/免疫原发现和优化

免疫学和疫苗开发工作流程

杂交瘤工作流程

杂交瘤工作流程

使用 3D 成像的自动类器官检测

21 世纪的疾病建模:使用 3D 成像的自动类器官检测

器官芯片系统适用于药物发现和疾病建模

适用于药物发现和疾病建模的高通量、类器官源性器官芯片系统

释放 Cell Painting 的力量

释放 Cell Painting 的力量

3D 细胞培养

3D 细胞培养、组织清除和高内涵成像,以寻求有效的非酒精性脂肪性肝病 (NAFLD) 解决方案

从高内涵检测过渡到 3D 检测

从高内涵检测过渡到 3D 检测:科学机遇和成像挑战

水浸物镜和高内涵成像

使用水浸物镜更深入了解细胞 3D 结构

基于 AI 的表型鉴定方法

用于进行人诱导多能性干细胞 (iPSC) 源性神经元细胞高内涵表型鉴定的一种基于人工智能 (AI) 的方法

实施 3D 神经元细胞球

在药物发现中使用 3D 神经元细胞球

使用自动成像加速您的筛选

使用高内涵和自动成像加速您的筛选

微孔板检测

通过基于微孔板的检测和高通量筛选加速对病毒感染和治疗的研究

 ImageXpress Micro Confocal 虚拟浏览

ImageXpress Micro Confocal 虚拟浏览

磁性 3D

磁性 3D 生物打印,在 2D 工作流程中进行 3D 细胞培养

Labtube 符合实验室自动化与筛选协会 (SLAS) 要求

LabTube 与 Molecular Devices 和 MIMETAS 会面(Susan Murphy 和 Sebastiaan Trietsch)

使用 MetaXpress 进行微孔板标注和曲线拟合

使用 MetaXpress 进行微孔板标注和曲线拟合

在 ImageXpress Micro Confocal 上使用 MetaXpress 进行微孔板采集

快速入门指南:在 ImageXpress Micro Confocal 上使用 MetaXpress 进行微孔板采集

在 ImageXpress Micro Confocal 上使用 MetaXpress 查看图像

快速入门指南:在 ImageXpress Micro Confocal 上使用 MetaXpress 查看图像

在 ImageXpress Micro Confocal 上使用 MetaXpress 进行图像分析

在 ImageXpress Micro Confocal 上使用 MetaXpress 进行从图像采集到分析的基本工作流程

开发高通量器官芯片组织

使用高内涵成像开发高通量器官芯片组织模型用于药物发现

iPSC 源性心肌细胞和神经元细胞球

iPSC 源性心肌细胞和神经元细胞球的毒性研究

3D 体外模型

优化用于生理相关性 3D 体外模型的高内涵筛选工具

微流控平台中 3D 神经元网络的形态表征

微流控平台中 3D 神经元网络的形态表征

肿瘤细胞球的 3D 成像

肿瘤细胞球的 3D 成像

用于识别 miRNA 的高内涵筛选

用于识别 miRNA 的高内涵筛选

STAT3 信号通路的选择性抑制剂的鉴别

STAT3 信号通路的选择性抑制剂的鉴别

Oliver Kepp 和 Jayne Hesley - 使用高内涵成像检测细胞死亡信号

Oliver Kepp 和 Jayne Hesley - 癌症的特征 - 使用高内涵成像检测并定量细胞死亡信号

ImageXpress Micro 多维共聚焦系统

通过新 ImageXpress Micro 共聚焦系统可进行多维高通量成像

拓展高内涵筛选的应用范围

拓展高内涵筛选的应用范围

为全基因组 RNAi 筛选准备检测

使用高内涵成像分析系统进行全基因组 RNAi 筛选检测

多重高内涵肝脏毒性检测

使用 iPSC 源性肝细胞进行多重高内涵肝脏毒性检测

利用体外组织模型对细胞层形态发生进行高内涵成像分析

利用体外组织模型对细胞层形态发生进行高内涵成像分析

简单、灵活的复杂生物事件高内涵成像

可实现复杂生物事件定量的简单、灵活的高内涵成像

现代自动化和高内涵成像工具

用于筛选干细胞源性心肌细胞的现代自动化和高内涵成像工具

从亚细胞结构到细胞球的 3D 成像分析

从亚细胞结构到细胞球,对样品进行高通量 3D 成像分析

活细胞成像可用于研究细胞分裂时间

利用活细胞成像功能对细胞分裂时间的调控机制进行研究

高通量 RNA 筛选可用于识别宿主因子

使用高通量 RNA 筛选以识别影响病毒感染的宿主因子

用于发现抗体药物的 HCA 工具的应用

用于发现抗体药物的 HCA 工具的应用

使用高内涵成像进行 3D 细胞球检测

使用高内涵成像设置 3D 细胞球检测

使用高通量芯片器官 (Organ-on-a-Chip) 平台的生理学相关组织模型

使用高通量器官芯片平台的生理相关性组织模型

多能干细胞在药物发现中的应用

新兴诱导性多功能干细胞在药物发现中的应用

StemoniX microBrain 3D 检测

适用于高通量筛选 (HTS) 的 StemoniX microBrain 3D 即用检测板

  • Citation
    Dated: Jan 12, 2021
    Publication Name: Upstate Medical University

    Patricia Kane, PhD

    All eukaryotic cells tightly control cellular pH. Proper control of cytoplasmic pH is essential for normal metabolism and cell growth, and acidification of organelles such as the lysosome, endosome, and Golgi apparatus is essential for protein sorting and degradation, ion homeostasis, and signal transduction. The vacuolar ATPase (V-ATPase) is one… View more

    All eukaryotic cells tightly control cellular pH. Proper control of cytoplasmic pH is essential for normal metabolism and cell growth, and acidification of organelles such as the lysosome, endosome, and Golgi apparatus is essential for protein sorting and degradation, ion homeostasis, and signal transduction. The vacuolar ATPase (V-ATPase) is one of the central players in pH control. All eukaryotic cells have V-ATPases of remarkably similar structure, and loss of V-ATPase function is lethal at early stages of development in higher eukaryotes and conditionally lethal in fungi.

    Contributors: Patricia Kane, PhD  
    Go to article

  • Citation
    Dated: Jan 01, 2019
    Publication Name: Toxicology Science

    Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures

    Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the… View more

    Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the potential for neurotoxicity. Here, we employed a human induced pluripotent stem cell (iPSC)-based 3D neural platform composed of mature cortical neurons and astrocytes as a model for this purpose. The iPSC-derived human 3D cortical neuron/astrocyte co-cultures (3D neural cultures) present spontaneous synchronized, readily detectable calcium oscillations. This advanced neural platform was optimized for high-throughput screening in 384-well plates and displays highly consistent, functional performance across different wells and plates. Characterization of oscillation profiles in 3D neural cultures was performed through multi-parametric analysis that included the calcium oscillation rate and peak width, amplitude, and waveform irregularities. Cellular and mitochondrial toxicity were assessed by high-content imaging. For assay characterization, we used a set of neuromodulators with known mechanisms of action. We then explored the neurotoxic profile of a library of 87 compounds that included pharmaceutical drugs, pesticides, flame retardants, and other chemicals. Our results demonstrated that 57% of the tested compounds exhibited effects in the assay. The compounds were then ranked according to their effective concentrations based on in vitro activity. Our results show that a human iPSC-derived 3D neural culture assay platform is a promising biologically relevant tool to assess the neurotoxic potential of drugs and environmental toxicants.

    Contributors: Oksana Sirenko 1 , Frederick Parham 2 , Steven Dea 3 , Neha Sodhi 3 , Steven Biesmans 3 , Sergio Mora-Castilla 3 , Kristen Ryan 2 , Mamta Behl 2 , Grischa Chandy 1 , Carole Crittenden 1 , Sarah Vargas-Hurlston 1 , Oivin Guicherit 3 , Ryan Gordon 3 , Fabian Zanella 3 , Cassiano Carromeu  
    Go to article

  • Citation
    Dated: Sep 01, 2018
    Publication Name: Assay and Drug Development Technologies

    High-Content Assay Multiplexing for Muscle Toxicity Screening in Human-Induced Pluripotent Stem Cell-Derived Skeletal Myoblasts

    This study set out to develop a high-throughput multiplexed assay using iPSC-derived skeletal myoblasts that can be used as a first-pass screen to assess the potential for chemicals to affect skeletal muscle. We found that cytotoxicity and cytoskeletal integrity are most useful and reproducible assays for the skeletal myoblasts when evaluating… View more

    This study set out to develop a high-throughput multiplexed assay using iPSC-derived skeletal myoblasts that can be used as a first-pass screen to assess the potential for chemicals to affect skeletal muscle. We found that cytotoxicity and cytoskeletal integrity are most useful and reproducible assays for the skeletal myoblasts when evaluating overall cellular health or gauging disruptions in actin polymerization following 24 h of exposure. Both assays are based on high-content imaging and quantitative image processing to derive quantitative phenotypes. Both assays showed good to excellent assay robustness and reproducibility measured by interplate and interday replicability, coefficients of variation of negative controls, and Z′-factors for positive control chemicals. Concentration response assessment of muscle-related toxicants showed specificity of the observed effects compared to the general cytotoxicity. Overall, this study establishes a high-throughput multiplexed assay using skeletal myoblasts that may be used for screening and prioritization of chemicals for more complex tissue chip-based and in vivo evaluation.

    Contributors: William D. Klaren and Ivan Rusyn  
    Go to article

  • Citation
    Dated: Aug 01, 2017
    Publication Name: Assay and Drug Development Technologies

    Phenotypic Assays for Characterizing Compound Effects on Induced Pluripotent Stem Cell-Derived Cardiac Spheroids

    Development of more complex, biologically relevant, and predictive cell-based assays for compound screening is a major challenge in drug discovery. The focus of this study was to establish high-throughput compatible three-dimensional (3D) cardiotoxicity assays using human induced pluripotent stem cell-derived cardiomyocytes. Using both high-… View more

    Development of more complex, biologically relevant, and predictive cell-based assays for compound screening is a major challenge in drug discovery. The focus of this study was to establish high-throughput compatible three-dimensional (3D) cardiotoxicity assays using human induced pluripotent stem cell-derived cardiomyocytes. Using both high-content imaging and fast kinetic fluorescence imaging, the impact of various compounds on the beating rates and patterns of cardiac spheroids was monitored by changes in intracellular Ca2+ levels with calcium-sensitive dyes. Advanced image analysis methods were implemented to provide multiparametric characterization of the Ca2+ oscillation patterns. In addition, we used confocal imaging and 3D analysis methods to characterize compound effects on the morphology of 3D spheroids. This phenotypic assay allows for the characterization of parameters such as beating frequency, amplitude, peak width, rise and decay times, as well as cell viability and morphological characteristics. A set of 22 compounds, including a number of known cardioactive and cardiotoxic drugs, was assayed at different time points, and the calculated EC50 values for compound effects were compared between 3D and two-dimensional (2D) model systems. A significant concordance in the phenotypes was observed for compound effects between the two models, but essential differences in the concentration responses and time dependencies of the compound-induced effects were observed. Together, these results indicate that 3D cardiac spheroids constitute a functionally distinct biological model system from traditional flat 2D cultures.In conclusion, we have demonstrated that phenotypic assays using 3D model systems are enabled for screening and suitable for cardiotoxicity assessment in vitro.

    Contributors: Oksana Sirenko, Michael K. Hancock, Carole Crittenden, Matthew Hammer, Sean Keating, Coby B. Carlson, and Grischa Chandy  
    Go to article

  • Citation
    Dated: Sep 01, 2016
    Publication Name: ASSAY and Drug Development Technologies

    Phenotypic Characterization of Toxic Compound Effects on Liver Spheroids Derived from iPSC Using Confocal Imaging and Three-Dimensional Image Analysis

    Cell models are becoming more complex to better mimic the in vivo environment and provide greater predictivity for compound efficacy and toxicity. There is an increasing interest in exploring the use of three-dimensional (3D) spheroids for modeling developmental and tissue biology with the goal of accelerating translational research in these areas… View more

    Cell models are becoming more complex to better mimic the in vivo environment and provide greater predictivity for compound efficacy and toxicity. There is an increasing interest in exploring the use of three-dimensional (3D) spheroids for modeling developmental and tissue biology with the goal of accelerating translational research in these areas. Accordingly, the development of high-throughput quantitative assays using 3D cultures is an active area of investigation. In this study, we have developed and optimized methods for the formation of 3D liver spheroids derived from human iPS cells and used those for toxicity assessment. We used confocal imaging and 3D image analysis to characterize cellular information from a 3D matrix to enable a multi-parametric comparison of different spheroid phenotypes. The assay enables characterization of compound toxicities by spheroid size (volume) and shape, cell number and spatial distribution, nuclear characterization, number and distribution of cells expressing viability, apoptosis, mitochondrial potential, and viability marker intensities. In addition, changes in the content of live, dead, and apoptotic cells as a consequence of compound exposure were characterized. We tested 48 compounds and compared induced pluripotent stem cell (iPSC)-derived hepatocytes and HepG2 cells in both two-dimensional (2D) and 3D cultures. We observed significant differences in the pharmacological effects of compounds across the two cell types and between the different culture conditions. Our results indicate that a phenotypic assay using 3D model systems formed with human iPSC-derived hepatocytes is suitable for high-throughput screening and can be used for hepatotoxicity assessment in vitro.

    Contributors: Oksana Sirenko, Michael K. Hancock, Jayne Hesley, Dihui Hong, Avrum Cohen, Jason Gentry, Coby B. Carlson, and David A. Mann  
    Go to article

  • Citation
    Dated: Mar 01, 2016
    Publication Name: Methods

    High-throughput imaging: Focusing in on drug discovery in 3D

    3D organotypic culture models such as organoids and multicellular tumor spheroids (MCTS) are becoming more widely used for drug discovery and toxicology screening. As a result, 3D culture technologies adapted for high-throughput screening formats are prevalent. While a multitude of assays have been reported and validated for high-throughput… View more

    3D organotypic culture models such as organoids and multicellular tumor spheroids (MCTS) are becoming more widely used for drug discovery and toxicology screening. As a result, 3D culture technologies adapted for high-throughput screening formats are prevalent. While a multitude of assays have been reported and validated for high-throughput imaging (HTI) and high-content screening (HCS) for novel drug discovery and toxicology, limited HTI/HCS with large compound libraries have been reported. Nonetheless, 3D HTI instrumentation technology is advancing and this technology is now on the verge of allowing for 3D HCS of thousands of samples. This review focuses on the state-of-the-art high-throughput imaging systems, including hardware and software, and recent literature examples of 3D organotypic culture models employing this technology for drug discovery and toxicology screening.

    Contributors: Linfeng Li, Qiong Zhou, Ty C.Voss, Kevin L., Quick, Daniel V.LaBarbera  
    Go to article

ImageXpress Micro Confocal 转盘共聚焦高内涵成像分析系统的相关产品和服务

使用灵活的高性能成像解决方案扩展您的研究

Molecular Devices 为 ImageXpress Micro 共聚焦高内涵成像系统提供灵活的配置,以满足您的研究需求并轻松捕获来自不同样本类型的图像(包括悬滴培养和圆底或平底微孔板),从而在环境控制条件下监测细胞健康动力学等。凭借 30 年以上的成像专业知识积累,我们能帮助您选择正确的配置,从而确保您的检测获得最佳图像。

标准硬件选项

  • 水浸物镜

    水浸物镜

    20X、40X 和 60X 水浸物镜可提高采集期间的几何精确度并减少光的折射,从而在较短曝光时间内获得更亮的光强度。

     

  • 相衬

    透射光源

    透射光照明立柱能够采集未染色细胞的高对比度图像,使其轻松与背景区分开。

     

  • 完整的高通量长期动力学

    环境控制

    环境控制能够维持温度和湿度水平,同时最大程度减少蒸发,从而进行持续多天的活细胞延时成像。

     

  • 机械自动化

    板载机械流控技术

    集成自动流控系统可使需要添加化合物、洗孔和培养基交换的检测工作流程实现自动化。

     

 

定制选项

 

Molecular Devices 可成功调整 ImageXpress Micro 共聚焦高内涵成像系统,以纳入具有下述功能的定制软件和硬件以及培养箱、液体工作站和机器人等其他实验室组件的集成,从而实现一个全自动化的工作单元。凭借在生命科学领域超过 30 年的经验,我们将为您提供高质量的产品和全球范围内的支持。

销售须遵守我们的定制产品购买条款,详情见 www.moleculardevices.com/custom-products-purchase-terms

  • 高强度激光

    高强度激光

    使用 5 通道或 7 通道高强度激光来扩展实验能力。

     

  • 自动移液器

    实时剂量反应

    自动移液器可在实现 > 100 帧/秒的实时图像采集的同时实现化合物添加。

     

  • 共聚焦磁盘模块

    深层组织穿透共聚焦转盘模块

    深层组织穿透共聚焦转盘模块可减少信号串扰,从而提高离焦光抑制并更深地穿透进组织中。

     

  • 完整的高通量长期动力学

    完整的高通量长期动力学

    在长时间下成像多块板,同时保持一致的温度、O2(缺氧)、CO2 和湿度条件。扩展活细胞自动操作能力至 200多块板。

     

  • 机械自动化

    扩展的机械自动化

    增加通量、消除人为误差、维持无菌性和实现一致的样品处理。模块化自动化设计——可在模块中添加组件并对其进行升级。

     

下载手册

 
 

 

高输出激光激发可将曝光时间减少高达 75%。†激光光源可以 5 通道或 7 通道光源的形式提供,输出强度为 400-1,000 mW/通道。7 通道激光光源包括近红外光,是具有更高多重检测要求客户的理想之选。

  • 获得信噪比更高、更清晰的图像
  • 由于曝光时间大大缩短,扫描速度可加快高达两倍
  • 使用适用于 CFP 和 YFP 的激光运行 FRET 实验
标准
标准强度图像
激光
高强度激光图像

 

在相同曝光下拍摄到的图像。

在对较厚的组织样本进行成像时,搭配使用专业的深层组织穿透共聚焦转盘模块与激光光源可提高深层组织的光穿透性,从而获得更高分辨率和更清晰的图像。†

  • 改善对焦平面以外光的抑制
  • 减少模糊(针孔交互作用)
  • 更深地穿透厚组织样品,从而获得更清晰的图像
标准转盘
标准旋转盘
深层组织穿透共聚焦转盘模块
使用共聚焦盘进行深组织渗透

在相同曝光下拍摄到的图像。

在开发期间使用客户样品获得的数据和图像。结果可能会有所不同。*突出功能的价格、交付时间和规格将根据互相协定的技术要求而变化。可能会根据解决方案要求调整标准性能。