跳转至主要内容
Molecular Devices, LLC.
  •   美谷分子仪器(上海)有限公司
    咨询服务热线:400-821-3787
  •   0 Cart
  • Store

  •  招贤纳士
  •  语言 
    • English
    • Deutsch
    • 中文
    • 日本語
    • Français
    • 한국어
    • Italiano
    • Español
Molecular Devices, LLC.
  • 产品
    • 产品

      新型 DispenCell™ 单细胞分配器技术能够以 3 倍速度更快地分离单细胞系,而且成本更低

      • 设置简单直观
      • 可即时证明克隆性和可追溯性
      • 独特的技术可轻柔地处理细胞样品
      • 台式尺寸  
        精心设计
      • 获得专利  
        一次性吸头
      DispenCell™ 单细胞分配器技术

      采用 BioAssemblyBot 6 轴机械臂的自动化高内涵筛选解决方案,适用于经优化的 3D 组织和类器官工作流程

      BioAssemblyBot 6 轴机械臂

    • 微孔板读板机(酶标仪)
      SpectraMax Mini 多功能微孔板读板机
      多功能微孔板读板机(酶标仪)
      • SpectraMax i3x
      • SpectraMax iD3/iD5
      • SpectraMax M 系列
      • FlexStation 3
      • SpectraMax Mini
      Spectramax ABS 微孔板
      光吸收读板机(酶标仪)
      • SpectraMax ABS/ABS Plus
      • SpectraMax VersaMax
      • SpectraMax QuickDrop
      • CMax Plus
      荧光酶标仪(读板机)
      荧光酶标仪(读板机)
      • SpectraMax Gemini
      SpectraMax 发光
      发光读板机
      • SpectraMax L

       

      MultiWash+ 微孔板洗板机
      微孔板堆板机/洗板机
      • StakMax 微孔板处理系统
      • AquaMax 洗板机
      • MultiWash+ 微孔板洗板机
      • MultiWash–C 微孔板洗板机
      SoftMax Pro 数据采集
      微孔板软件
      • SoftMax Pro 软件
      • SoftMax Pro GxP
        合规软件
      GxP 解决方案
      GxP 合规性解决方案
      • SoftMax Pro GxP
        合规软件
      • 软件安装和验证服务
      • IQ/OQ/PM 服务
      • SpectraTest 验证板
      实验室自动化和定制
      实验室自动化和定制
      • 适用于高通量平板测定的实验室自动化
    • 细胞成像分析系统
      ImageXpress Pico 自动化细胞成像分析系统
      自动细胞成像系统
      • ImageXpress Pico
      • ImageXpress Nano
      高内涵成像分析系统
      高内涵成像分析系统
      • ImageXpress Confocal HT.ai 智能化共聚焦高内涵成像分析系统
      • ImageXpress Micro Confocal
      • ImageXpress Micro 4
      Stratominer 分析
      采集和分析软件
      • IN Carta
      • StratoMineR
      • MetaXpress
      • CellReporterXpress
      • MetaMorph
      实验室自动化和定制
      实验室自动化和定制
      • 适用于高通量、高内涵筛选 (HCS) 的实验室自动化
      • BioAssemblyBot 400 生物打印机自动化高内涵筛选 (HCS) 解决方案
    • 克隆筛选
      Clone Pix 系列
      哺乳动物细胞克隆拣选
      • ClonePix 2
      QPix 微生物克隆筛选系统
      微生物克隆拣选
      • QPix 420
      • QPix 450/460
      • QPix HT
      Cloneselect Imager FL
      单细胞成像
      • CloneSelect Imager 细胞生长分析系统
      • CloneSelect Imager 细胞生长分析系统 FL
      DispenCell 单细胞分配器
      单细胞分离
      • DispenCell 单细胞分配器
      实验室自动化
      实验室自动化和定制
      • 适用于高通量克隆筛选的实验室自动化
      CloneMedia 与 XP Media
      培养基和试剂
      克隆筛选检测试剂盒
      克隆筛选检测试剂盒
    • Flipr Penta
      Flipr Penta
      Flipr Penta
      • FLIPR Penta 高通量实时荧光检测分析系统
      Screenworks
      分析软件
      • ScreenWorks 软件
      • Peak Pro 2软件模块
      Flipr 检测试剂盒
      FLIPR 检测试剂盒
      • 钙离子检测试剂盒
      • 钾离子检测试剂盒
      • 膜电位检测试剂盒
      • EarlyTox 心脏毒性检测试剂盒
    • Axon 膜片钳
      透明
      放大器
      • Axopatch 200B 电容器
      • MultiClamp 700B
      • Axoclamp 900A
      透明
      数模转换器
      • Axon Digidata 1550B 低
      透明
      采集和
      分析软件
      • pCLAMP 11 软件套装
    • 其他产品
      Threshold 免疫分析系统
      Threshold 免疫分析系统
      GenePix 微阵列芯片扫描仪
      GenePix 微阵列基因芯片扫描仪
      Imagexpress Micro Xls
      Imagexpress Micro xls
      经认证的翻新产品
      经认证的翻新产品
      IDBs 解决方案
      IDBS 的研发 (R&D) 云解决方案
    • 试剂盒
      Cardiotox
      • EarlyTox 心脏毒性检测试剂盒
      细胞活力
      • EarlyTox 细胞完整性检测试剂盒
      • EarlyTox 细胞活性检测试剂盒
      DNA 定量
      • SpectraMax Quant dsDNA 检测试剂盒
      Elisa、蛋白印迹法
      • CatchPoint SimpleStep ELISA 试剂盒
      • ScanLater 蛋白免疫印迹检测试剂盒
      GPCR
      • FLIPR 钙流检测试剂盒
      • Fura-2 QBT 钙离子检测试剂盒
      • CatchPoint cAMP 荧光检测试剂盒
      • CatchPoint cGMP 荧光检测试剂盒
      离子通道
      • FLIPR 钾通道检测试剂盒
      • FLIPR 膜电位检测试剂盒
      IGG 定量
      • ValitaTiter
      • CloneDetect
      报告基因
      • SpectraMax Glo Steady-Luc 报告基因检测试剂盒
      • SpectraMax DuoLuc 报告基因检测试剂盒
      转运体
      • QBT 脂肪酸摄取检测试剂盒
      • 神经递质转运体摄取检测试剂盒
      其他
      • 污染物检测分析
      • 酶类 - IMAP 检测
    • 配件及耗材
      微孔板读板机(酶标仪)
      • 符合SBS要求384 孔板
      • 384 孔高样本回收率板
      • 浅孔微孔板
      • SpectraDrop 微量微板
      • 使用 SmartInject 技术的 SpectraMax 注射器卡盒
      • SpectraMax MiniMax 300 细胞成像系统
      • Western Blot 卡盒
      • 96孔微孔板
      克隆筛选
      • 可调节皮氏培养皿和微孔板适配器
      • QTray 培养板
      • Calibeads 荧光标记微球
      • 封板垫及板盖
      • Chroma滤光片
      • 清洁消毒试剂
      • CloneSelect 单细胞分离系统分离槽
      • 深孔板
      • QPix 针和头
      • QReps 复制器
      Axon 膜片钳
      • Soft Panel 放大器手动控制器
      光谱 Img
  • 应用
    • 应用

      Molecular Devices 通过收购 Cellesce 增加了专有的患者源性类器官技术

      2022 年 12 月 6 日

      • Cellesce 的首创技术为大规模药物筛选打造了一致的患者源性类器官
      • 收购巩固了 Molecular Devices 作为 3D 生物学解决方案创新者的地位
      • 综合专业知识将加快行业采用生理学相关细胞模型进行药物发现

       

      浏览 OIC

      阅读新闻稿

      Cellsce
      应用光谱
    • 应用
      2019 冠状病毒病 (COVID-19)
      COVID-19 研究解决方案
      2019 冠状病毒病 (COVID-19)
      COVID-19 公司更新
      2019 冠状病毒病 (COVID-19)
      疫苗开发工作流程
      传染病研究应用
      疫苗研究应用
    • 研究领域
      透明
      3D 细胞模型
      透明
      癌症研究解决方案
      透明
      细胞株开发
      透明
      药物发现和开发
      透明
      食品和饮料
      透明
      基因编辑(成簇规律间隔短回文重复序列 [CRISPR]/Cas9)
      透明
      类器官研究
      透明
      干细胞研究
      透明
      毒理学
    • 微孔板读板机(酶标仪)
      透明
      细胞活性
      透明
      细胞信号传导
      透明
      ELISA
      透明
      微生物学和污染物
      透明
      核酸 (DNA/RNA) 检测和分析
      透明
      蛋白检测、定量、分析
      透明
      技术:检测模式
      • 吸光度
      • 荧光
      • 荧光偏振
      • 发光
      • TRF、TR-FRET 和 HTRF
      • 免疫印迹
    • 细胞成像分析系统
      透明
      细胞计数
      透明
      细胞成像和分析
      透明
      细胞迁移检测
      透明
      Cell Painting
      透明
      活细胞成像
      透明
      神经突生长
      透明
      器官芯片
      透明
      类器官
      透明
      细胞球
    • 克隆筛选
      透明
      细胞株开发工作流程
      透明
      单克隆抗体 (mAb)
      • 杂交瘤细胞
      • 噬菌体展示
      • 单克隆抗体生产
      透明
      单克隆性
      透明
      合成生物学
    • Flipr Penta
      透明
      G 蛋白偶联受体 (GPCR)
      透明
      离子通道
      透明
      心脏毒性
    • Axon 膜片钳
      透明
      膜片钳电生理学
  • 资源
    • 资源
    • 资源中心
      菜单资源 图标/应用说明
      应用资料
      菜单资源 图标/引用
      引用
      电子书 图标
      电子书
      菜单资源 图标/科学海报
      学术海报
      菜单资源 图标/教程和视频
      视频和网络研讨会

      搜索

    • 博客 – 实验室记录
      间隔区
      酶联免疫吸附测定法 (ELISA) 的优势可实现……
      间隔区
      用于检测的案例研究 -……
      How 3D Cell Models Will Shape the Future of Drug Discovery
      2023 年 3 月 7 日 靶标发现和药物开发在很大程度上依赖于二维 (2D) 细胞和动物模型来确定候选药的疗效和毒性作用。然而,90% 的候选物未能……
      了解更多  
    • 客户研究的重大突破

      了解科学家如何借助我们的产品和解决方案推进发现。

    • 创新
      透明
      人工智能 (AI)、机器学习和深度学习
      透明
      AgileOptix 转盘技术
      透明
      自动对焦
      透明
      数字共聚焦可选配置
      透明
      高内涵筛选
      透明
      HumSilencer 技术
      透明
      激光照明
      透明
      QuickID 靶向目标图像采集
    • 技术
      透明
      吸光度
      透明
      电生理学
      透明
      荧光
      透明
      荧光偏振 (FP)
      透明
      发光
      透明
      TRF、TR-FRET 和 HTRF
      透明
      水浸物镜
      透明
      免疫印迹
    • 视频库
      透明
      微孔板读板机(酶标仪)
      透明
      细胞成像分析系统
      透明
      FLIPR 系统
      透明
      克隆筛选
      透明
      Axon 膜片钳
      透明
      按需进行的网络研讨会
  • 服务和支持
    • 服务和支持
    • 概览
      Spectra 徽标
      SPECTRANET 客户服务门户网站
      GxP 合规性
      GxP 合规性解决方案
      实验室自动化和定制
      实验室自动化和定制
      专业服务
      专业服务

      技术支持

      北美洲  
      +1 800-635-5577  
      周一到周五,太平洋标准时间 (PST) 上午 7 点到下午 5 点

      欧洲  
      +44-118-944-8000  
      周一到周五,格林尼治标准时间 (GMT) 上午 8 点到下午 5 点

      查找区域支持

      Spectranet 客户门户网站

    • 客户门户网站 - Spectranet
      Spectranet

      INTRODUCING OUR NEW CUSTOMERCARE PORTAL

      SpectraNet is an intuitive, simple-to-use, self-service customer portal providing a new level of experience available 24/7.

      Create your account today to get full access to integrated content and world-class customer service.

      REGISTER LOGIN
      归档支持单
      归档支持单
      知识库
      知识库
      注册产品
      注册您的产品
      技术资源
      技术资源
    • GXP 合规性解决方案
      GxP Softmax Pro GxP 软件
      SOFTMAX PRO GXP 软件
      GxP 软件安装
      软件安装和验证服务
      GxP Spectratest 验证板重新验证
      SPECTRATEST 验证板
      IQ OQ 服务
      IQ/OQ/PM 服务
    • 实验室自动化
      实验室自动化和定制
      实验室自动化和定制
      高内涵筛选 (HCS)
      高通量、高内涵筛选
      • BioAssemblyBot 400 生物打印机自动化高内涵筛选 (HCS) 解决方案
      高通量平板测定
      高通量平板测定法
      高通量克隆筛选
      高通量克隆筛选
    • 专业服务
      专业服务
      专业服务
      服务计划
      服务计划
  • 关于我们
    • 关于我们

      MOLECULAR DEVICES 扩大奥地利全球研发中心

      2022 年 10 月 12 日        
      这个更大的研发中心将是萨尔斯堡类器官创新中心的未来基地,该创新中心是一个推进自动化细胞系开发、类器官开发和筛选解决方案以加块药物发现的合作研究场所

       

      浏览 OIC

      阅读新闻稿

      奥地利研发中心的剪彩仪式
      应用光谱
    • 公司简介

      40 年来一直为我们的客户提供蛋白和细胞生物学方面的创新生物分析解决方案。

    • 领导力

      我们丰富的经验、商业见解和共同的目标推动了我们的日常决策,以鼓励员工发挥其最大的潜力。

      领导力

    • 招贤纳士

      我们以团队为导向的企业文化确保了思想和观点的多元化,并建立牢固的信任关系。

    • 新闻中心
      透明
      新闻
      透明
      时事新闻
      Silver Sponsor Molecular Devices at Society for Laboratory Automation and Screening 2023 International Conference and Exhibition
      Feb 22, 2023 Showcasing new industry collaborations, automated technology, and workflow innovations that span 3D biology, cell line development, and drug…
      Read more  
    • 活动中心
      Solutions in Cell Line Development
      User Meeting | Europe | Trieste, Italy– Apr 19, 2023 We are pleased to announce our workshop on cell line development solutions, the Molecular Devices team for the Biopharma unit with our loyal…
      Read more  
      SLAS 2023 Building Biology in 3D Symposium
      Conference | Europe | Cambridge, United Kingdom– Apr 20 – Apr 21, 2023 The SLAS 2023 Building Biology in 3D Symposium will take place in Cambridge, United Kingdom 20-21 April 2023. This two-day event will address the…
      Read more  
  • 联系我们
  • 搜索

    搜索

  • 询问 价格

移动导航

  • 产品
    • 所有产品
    • 微孔读板机(酶标仪)
      • 多功能微孔板读板机(酶标仪)
      • 光吸收读板机(酶标仪)
      • 荧光酶标仪(读板机)
      • 发光读板机
      • 堆板机
      • 洗板机
      • SoftMax Pro 软件
      • SoftMax Pro GxP
        合规软件
      • GxP 合规性解决方案
      • 实验室自动化和定制
    • 细胞成像分析系统
      • 自动细胞成像系统
      • 高内涵成像分析系统
      • 采集和分析软件
      • 实验室自动化和定制
    • 克隆筛选
      • 哺乳动物细胞克隆拣选
      • 微生物克隆拣选
      • 单细胞成像
      • 单细胞分离
      • 实验室自动化和定制
      • 培养基和试剂
      • 克隆筛选检测试剂盒
    • Flipr Penta
      • Flipr Penta
      • 分析软件
      • FLIPR 检测试剂盒
    • Axon 膜片钳
      • 放大器
      • 数模转换器
      • pCLAMP 软件
    • 其他产品
      • Threshold 免疫分析系统
      • GenePix 微阵列基因芯片扫描仪
      • ImageXpress Micro XLS
      • 经认证的翻新产品
      • IDBS 的研发云解决方案
    • 试剂盒
      • Cardiotox
      • 细胞活性
      • DNA 定量
      • ELISA、蛋白质印迹
      • GPCR
      • 离子通道
      • IgG 定量
      • 报告基因
      • 转运体检测
      • 其他
    • 配件与耗材
      • 微孔板读板机
      • 克隆筛选
      • Axon 膜片钳
  • 应用
    • 所有应用
    • 应用
      • COVID-19 研究解决方案
      • COVID-19 公司更新
      • 疫苗开发工作流程
      • 疫苗研究应用
    • 研究领域
      • 3D 细胞模型
      • 癌症研究解决方案
      • 细胞株开发
      • 药物发现和开发
      • 食品和饮料
      • 基因编辑(成簇规律间隔短回文重复序列 [CRISPR]/Cas9)
      • 类器官创新中心
      • 干细胞研究
      • 毒理学
    • 微孔板读板机(酶标仪)
      • 细胞活性
      • 细胞信号传导
      • ELISA
      • 微生物学和污染物
      • 核酸 (DNA/RNA) 检测和分析
      • 蛋白检测、定量、分析
      • 技术:检测模式
        • 吸光度
        • 荧光
        • 荧光偏振
        • 发光
        • TRF、TR-FRET 和 HTRF
        • 免疫印迹
    • 细胞成像分析系统
      • 细胞计数
      • 细胞成像和分析
      • 细胞迁移检测
      • Cell Painting
      • 活细胞成像
      • 神经突生长
      • 器官芯片
      • 类器官
      • 细胞球
    • 克隆筛选
      • 单克隆抗体 (mAb)
      • 单克隆性
      • 合成生物学
    • Flipr Penta
      • G 蛋白偶联受体 (GPCR)
      • 离子通道
      • 心脏毒性
    • Axon 膜片钳
      • 膜片钳电生理学
  • 资源
    • 资源中心
      • 应用资料
      • 引用
      • 电子书
      • 学术海报
      • 视频和网络研讨会
    • 博客 – 实验室记录
    • 客户研究的重大突破
    • 创新
      • 人工智能 (AI)、机器学习和深度学习
      • AgileOptix 转盘技术
      • 自动对焦
      • 数字共聚焦可选配置
      • 高内涵筛选
      • HumSilencer 技术
      • 激光照明
      • QuickID 靶向目标图像采集
    • 技术
      • 吸光度
      • 电生理学
      • 荧光
      • 荧光偏振 (FP)
      • 发光
      • TRF、TR-FRET 和 HTRF
      • 水浸物镜
      • 免疫印迹
    • 视频库
      • 微孔板读板机(酶标仪)
      • 细胞成像分析系统
      • FLIPR 系统
      • 克隆筛选
      • Axon 膜片钳
      • 按需进行的网络研讨会
  • 服务和支持
    • 概览
      • SPECTRANET 客户服务门户网站
      • GxP 合规性解决方案
      • 实验室自动化解决方案
      • 专业服务
    • 客户门户网站 - Spectranet
      • 注册
      • 登录
      • 归档支持单
      • 知识库
      • 注册您的产品
      • 技术资源
    • GXP 合规性解决方案
      • SOFTMAX PRO GXP 软件
      • 软件安装和验证
      • SpectraTest 验证板
      • IQ/OQ/PM 服务
    • 实验室自动化
      • 实验室自动化和定制
      • 高通量、高内涵筛选
      • 高通量平板测定法
      • 高通量克隆筛选
    • 专业服务
      • 专业服务
      • 服务计划
  • 关于我们
    • 公司简介
    • 领导力
    • 招贤纳士
    • 新闻中心
      • 新闻中心
      • 时事新闻
    • 活动中心
  • 联系我们
  • 询问 价格
  1. 主页
  2. Lab Notes
  3. 细胞成像分析系统
  4. 3D 类器官和复杂细胞检测的自动化 [播客]
Molecular Devices Lab Notes

3D 类器官和复杂细胞检测的自动化 [播客]

  • 2023 年 1 月 27 日
  • Oksana Sirenko, PhD

As we enter the era of sophisticated drug discovery with gene therapy and personalized medicine, we need to be prepared to study complex diseases, assess the therapeutic effect of drugs and identify adverse effects that can pose risks to patient health. Unfortunately, the current preclinical methods, such as animal models or 2D cell cultures, are inadequate. Because the physical and chemical properties of these models do not represent the human condition, preclinical drug evaluation does not translate to clinical success. That’s why the development of 3D cell models, such as organoids, can be a huge milestone for improving the evaluation of drug efficacy and safety.

Dr. Oksana Sirenko is the senior manager of assay development at Molecular Devices, working on the development of complex cell-based models for 3D biology, as well as high-content imaging and assay automation.

Dr. Oksana Sirenko Senior scientist

After developing high-throughput cell-based assays at several biotechnology companies, such as Bayer, Fibrogen, and Bioseek, she became part of the Molecular Devices team as a research scientist in 2009. She is responsible for developing and optimizing stem cell-derived 3D models for anti-cancer drug screening, as well as drug toxicity assessment for neurons, the cardiovascular system, and the liver. Oksana holds a PhD in Biochemistry/Biophysics, has over 15 years of industry experience, and has authored over 35 scientific papers.

In this podcast excerpt, Senior scientist Oksana discusses the advantages of 3D cell models while addressing challenges in 3D cell imaging, such as image quality, high throughput, automation, and analysis.

Table of Contents

  1. Why are 3D cell models and 3D organoids so useful in disease research and drug screening?
  2. Why does the complexity of 3D models present a hurdle/challenge for researchers?
  3. Can you outline a typical workflow for 3D organoid development and analysis?
  4. Can you tell me a bit about how you apply 3D cell model workflows specifically to your research?
  5. Can you explain how to automate the workflow for the development and analysis of organoids?
  6. How can automation aid in the research of complex systems specifically?
  7. How will you use these systems again in your future research?
  8. How will the automation of 3D organoid analysis evolve in the future?

1. Why are 3D cell models and 3D organoids so useful in disease research and drug screening?

The main problem in current disease research and drug development is that only about 3% of developed drugs make it to the clinic. The majority of drugs fail in clinical trials because of a lack of efficacy or unwanted toxicity problems. Better assay systems and disease models are needed to facilitate drug discovery and better predict success in the clinic.

Today, biology is shifting toward increased complexity for assays and models that can be used for drug discovery and development. 3D models are believed to bridge the gap between traditional cell-based models, and tissues and organs. 3D models, which include spheroids, organoids, and organ-on-a-chip, present a variety of human cell types, such as liver, immune cells, cardiac cells, and fibroblasts. Also, they can mimic the morphology of human tissue types, such as 3D tumor growth, crypts in intestinal organoids, neural tubes, or the flow of liquids. Finally, they represent at least some aspects of tissue functionality, from the metabolic activity of the liver to the beating of cardiac organoids to spikes of neuronal activity in brain organoids. This greater complexity and sophistication allow us to mimic processes in tissues, interactions between cell types, responses to drugs, toxicity effects, and processes of drug penetration into the tissue.

3D triple-negative breast cancer patient-derived tumoroids

Cerebral organoids show organization reminiscent of a developing brain.

2。Why does the complexity of 3D models present a hurdle/challenge for researchers?

Traditional 2D cell assays are easier to work with, but 3D assays have greater predictability and allow the generation of more biologically relevant data. However, despite the increasing interest in 3D research, the wide adoption of assays is limited by technical hurdles and assay complexity, which leads to higher costs, lower throughput, and a lack of reproducibility. Greater complexity presents challenges, but opportunities for instrument development and automation development would enable scientists to run 3D assays with greater throughput and accuracy.

3。Can you outline a typical workflow for 3D organoid development and analysis?

The typical workflow for organoids assays contains a number of steps, and this process is typically much longer than 2D workflow steps.

类器官工作流程说明

3D organoids can be derived from primary cells like intestinal organoids or induced pluripotent stem cells (iPSCs), e.g., neuronal or cardiac organoids. The workflow may start from 2D pre-culture or expansion of iPSC cells, followed by the differentiation step. After that, cells are mixed with Matrigel, and typically developed inside Matrigel domes, which also may include passaging and expansion. Intestinal organoids, colorectal, pancreatic, and liver are typically developed using this Matrigel dome step.

Alternatively, some other organoid types do not require Matrigel but instead are developed in low attachment plates (e.g., cardiac organoids).

Development of organoids takes from a few days to several weeks. Some protocols even require a few months. This is a very tedious process and will greatly benefit from automation.

Finally, the endpoint assay, whether it is a drug treatment, viral infectivity assay, or toxicity assessment, is set up in a multi-well format, with 96 or 384-well plates.

Next, cells are treated with drugs and processed for read-outs, which may include ATP assays, cell death assays, high-content imaging, or calcium oscillation.

4。Can you tell me a bit about how you apply 3D cell model workflows specifically to your research?

We are focusing on the development of automation protocols for automated cell cultures, as well as automated imaging and image analysis for complex 3D workflows. Recently, we developed and ran automated screening assays for finding more efficient anti-cancer drugs for triple-negative breast cancer. We used patient-derived cancer organoids representing a drug-resistant disease phenotype, and we applied automation to culture 3D organoids, simulate drug intervention, and run end-point assays for identifying the compounds that kill tumor cells. We tested a library of compounds and found several candidates that had greater efficacy than current standard drugs.

5。Can you explain how to automate the workflow for the development and analysis of organoids?

We created an automated workcell at Molecular Devices that combines several instruments in one complex system. It includes a Beckman Biomek automated liquid handler, a LiCONiC automated incubator, our ImageXpress HT.ai high-content imaging system, our SpectraMax plate reader and AquaMax washer, and a Bionex automated centrifuge. All the components are connected by a collaborative robot, PreciseFlex 400 that can move plates from one instrument to another at desired time points, while scheduling software ensures that all system elements work together seamlessly. Each instrument has multiple protocols designed for different steps, including feeding the cells and organoid plating, which can be called out by the scheduler at indicated times.

类器官创新中心

The Organoid Innovation Center at Molecular Devices combines cutting-edge technologies with novel 3D biology methods to address key challenges of scaling complex 3D biology.

Imaging methods are another exciting area of technology for organoid research. To image organoids or organ-on-a-chip, we need to use advanced optics. The ImageXpress high-content imaging system has several advantages for 3D samples:

Powerful lasers and confocal optics allow us to take the Z-stack of multiple images starting from the bottom and going up with steps like 5-10 microns Confocal optics allow us to reject the light that is out of focus so that we can get sharper images throughout organoids and Matrigel.

Next, our MetaXpress image analysis software analyzes the images in each 2D slice and converts data into 3D space. You can get multiple measurements to characterize organoids, cells, or subcellular organelles. These measurements help define cell counts, intensities, volumes, area, distances, and more, allowing us to monitor and quantitate changes in morphology, cell content, and viability. We also have machine learning elements, where users can train software to recognize objects, and features, to provide more efficient and insightful analysis.

6。How can automation aid in the research of complex systems specifically?

Automating would reduce labor and repetitive tasks like feeding cells every day or every second day for 2 months. Also, it will help to ramp up the research with higher throughput. For example, instead of studying 3 cell lines or 5 mutations, automation would allow you to test 50 cell lines to study 100 mutations.

High-content imaging powered by machine learning algorithms will allow to observe and characterize a variety of changes in organoids and cells, providing multiple readouts and yielding a valuable set of information about cell growth, differentiation, cell cycle, death, apoptosis, gene expression, or activation of signaling pathways.

7。How will you use these systems again in your future research?

In addition to cancer biology studies, we are actively developing other workflows, including but not limited to intestinal organoids, stem cell workflow, cardiac organoids, and more.

8。How will the automation of 3D organoid analysis evolve in the future?

We believe, as biology evolves and the complexity of assays increases, automation will be increasingly important for better understanding disease mechanisms, accelerating drug discovery, and eventually finding better ways to treat diseases.

By developing new and more advanced technologies and instruments, we believe we will further contribute to the progress of life sciences.

Understanding the basic principles behind 3D organoids - and the current bottlenecks - is crucial to the successful development and utilization of these advanced models for drug discovery. 

 

Listen to the full podcast

If you'd like to learn more, please enjoy the full podcast, “Complex assays with Ian Shoemaker, Beckman Coulter Life Sciences & Dr Oksana Sirenko, Molecular Device." 

 

Drug Target Review · Episode 14 - Ian Shoemaker, Beckman Coulter & Dr Oksana Sirenko, Molecular Devices

Here they discuss a comprehensive outlook on the science of organoid research – discover how organoid models are developed, used within our experts’ research, and how the automation of 3D organoid analysis will evolve in the future, plus much more!

 

  • Share on LinkedIn
  • Share on Facebook
  • Share on Twitter
  • Share on Youtube

Recent posts

View All Posts
间隔区

ELISA 的优势可实现准确和快速的药物发现

Since its discovery nearly 50 years ago, the Enzyme-Linked Immunosorbent…

View ELISA Advantages
间隔区

3D 细胞模型将如何塑造药物发现的未来

Target discovery and drug development rely heavily on 2D cell and animal…

A roundtable discussion
间隔区

以推进药物发现为目的的检测就绪型患者源性类器官 (PDO) 和高通量 3D 成像的案例研究

Introduction – the problem.  The average cost of bringing a new drug to…

Read case study
间隔区

庆祝科学艺术:A D+I interview with Daniele Tortorella

At Molecular Devices, we cultivate a culture where associates around the…

Celebrate D+I
间隔区

适用于自动化 3D 生物学工作流程的先进技术 #SLASEurope2022

SLAS Europe 2022, hosted numerous sessions packed with the latest…

View SLAS EU activities
对比 /

微孔板读板机

  • SpectraMax i3x
  • SpectraMax iD3/iD5
  • SpectraMax M 系列
  • SoftMax Pro 软件

细胞成像

  • ImageXpress Confocal HT.ai 智能化共聚焦高内涵成像分析系统
  • ImageXpress Pico
  • IN Carta 图像分析软件

克隆筛选

  • ClonePix 2 细胞克隆筛选系统
  • QPix 微生物克隆筛选系统

FLIPR 系统

Axon 膜片钳

实验室自动化

GXP 合规性

  • 新闻中心
  • 活动中心
2023 年 4 月 19 日

Solutions in Cell Line Development

2023 年 4 月 20 日

SLAS 2023 在 3D 研讨会上构建生物学

2023 年 4 月 25 日

3D 细胞培养 2023

更多事件

2023 年 2 月 22 日

Silver Sponsor Molecular Devices at Society for Laboratory Automation and Screening 2023 International Conference and Exhibition

2023 年 2 月 13 日

Molecular Devices inks deal with HUB Organoids to advance automated intestinal organoid screening technology

2023 年 2 月 7 日

Molecular Devices partners with SEED Biosciences to exclusively offer DispenCell Single-Cell Dispenser, expanding leadership in cell line development

更多新闻
时事通讯加载器
  • 2023 年 3 月
  • 2023 年 2 月
  • 2023 年 1 月

全球总部

  • 地址 图标

    Molecular Devices, LLC.
    3860 N First Street
    San Jose, CA 95134

  • 联系我们

    Phone: +1 800-635-5577

    电话:+86-400-821-3787

    Phone: +44-118-944-8000

    Phone: +44-118-944-8000

    Phone: +82-2-3471-9531

    Teléfono: +44-118-944-8000

    Telefono: +44-118-944-8000

  • 办公时间

    Mon-Fri 8:00 am - 5:00 pm (PST)

    周一至周五,早上 9 点至下午 5 点 30 分

    Montag bis Freitag 8 h à 17 h (GMT)

    lundi à vendredi 8 h à 17 h (GMT)

    월~금, 오전 9시~ 오후 5시 (한국표준시)오후

    de lunes a viernes 8 h à 17 h (GMT)

    lunedi al venerdì 8 h à 17 h (GMT)

  • 产品销售

    Sales +1 877-589-2214

    售前咨询 : 400-821-3787 转 1

    Verkauf 00800 665 32860

    Ventes 00800 665 32860

    매상 82 2 3471 9531

    Ventas 00800 665 32860

    Saldi 00800 665 32860

  • 技术支持

    Support +1 800 635 5577

    售后咨询 : 400-821-3787 转 2

    Unterstützung +44-118-944-8000

    Support +44-118-944-8000

    지원하다 +82-2-3471-9531

    Apoyo +44-118-944-8000

    Supporto +44-118-944-8000

  • 知识库

    Spectranet 客户门户网站

页脚导航

  • 条款与条件
  • 隐私政策
  • 请勿出售或共享我的数据
  • 网络使用条款
  • 商标
  • 支持
  • 联系我们
  • 网站地图
  • Danaher Life Sciences
  • 招贤纳士

©2023 Molecular Devices, LLC. All rights reserved.

©2023 Molecular Devices, LLC. 美谷分子仪器(上海)有限公司保留所有权利。
All Rights Reserved 沪ICP备05056171号-1

barcode